

Microbiome Workshop

Hena R. Ramay Bioinformatician International Microbiome Centre University of Calgary

I'd like to acknowledge that we are on Treaty 7 territory, the traditional territories of the Blackfoot Nations, including Siksika (Sick-sick-ah), Piikani (Pee-can-ee), and Kainai (Kigh-anigh), the Tsuut'ina (Soot- ina), Nation and Stoney Nakoda First Nations. We acknowledge all the many First Nations, Métis, and Inuit whose footsteps have marked these lands for centuries.

ACKNOWLEDGING LAND AND PEOPLE

Why do we care about microbes?

How are they communicating with us?

Source: https://slideplayer.com/slide/16950853/

Meta-genome

Shotgun Sequencing Output

ASV: Amplicon Sequence Variant

Amplicon Sequencing

What should we amplify?

The Small Subunit 16s ribosomal RNA gene

Highly conserved gene found in most bacteria

A variety of hypervariable region

Many microbiomes in parallel

1. Break all cells, extract all DNA

2. PCR-amplify 16s rRNA genes using barcoded primers

3. Sequence samples

4. Cluster sequences after De-multiplexing for each sample

5. Count each species

https://www.biostat.washington.edu/sites/default/files/modules/2018-SISMID-01b.pdf

Amplify 16s region

ASV Table

	Sample 1	Sample 2	Sample 3
ASV 1	0.5	0.4	0.6
ASV 2	0.2	0.3	0.1
ASV 3	0.2	0.1	0.2
ASV 4	0.1	0.2	0.1

Amplicon Sequencing Cycle

Bacteria + Archaea

ASV 1 = Bug X

ASV: Amplicon Sequence Variant is a sequence detected with a certain abundance in one or more samples Typical Workflow

Thoughtful data analysis is critical for successful taxonomic assignment

What do we know about our data?

16s Region

Which region was sequenced, read length & depth

Controls

Did you use negative (extraction) and positive (mocks) ?

Feasibility

Will this data answer the questions asked by the investigator?

Read Assignment

Are the reads assigned correctly to each sample?

Sample size

Are there enough samples for down stream analysis

Pick a sequencing technique Illumina (MiSeq)

Select primers & Read lengths

Make sure there is an overlap!!!!

How do we select the tools and use them well?

Phix Contamination

Paired End Reads

Source: Illumina

Base Quality differs between Fwd and Rev Reads

Tools

FastQC FastQp MultiQC & Specialized 16s rRNA packages

Source: Dada2 R package

Trimming & Quality Filtering

Tools CutAdapt

Trimming & Quality Filtering

Available Methods

Minimum Q (Q \geq = 20)

S Truncate if 3 consecutive bases are Q < 3</p>

Expected Errors

Read length	% of reads
10	98.96
100	96.97
200	89.3
250	80.5

<u>Source: Edgar et al., 2015</u>

The common path

Denoising reads

Clustering

OTUs: Lump similar sequences together DADA2: Statistically infer the sample sequences (Amplicon sequence variants: ASVs)

Source: Callahan et al., 2016

Clustering

Real example, exact sequence resolution

Lactobacillus crispatus sampled from vaginal microbiome 42 pregnant women

Data: MacIntyre et al. Scientific Reports, 2015.

DADA2 algorithm cartoon

Input: unique sequences, their quality values, and abundances

The common path

Merge Paired End Reads

Chimeric Sequences

Created during PCR Fragment primes different extension

About 1-5 % of reads are chimeric

Source: Lahr & Katz, 2009

Important

DADA2 gives us Amplicon sequence Variants (ASVs) not operational taxonomic units OTUs

The common path Peooos Remove Quality Denoise Classify Chimeric Control Seqs Check Read Quality Merge Reads Select Database **Correct Errors** Dereplicate Remove Primers Assign Taxonomy Check CHIMERA

Quality Filter & Truncation

Phix Contamination

Taxa levels Kingdom Phylum Class Order Family Genus Species

Reference Databases

Taxonomy	Туре	No. of nodes	Lowest rank	Latest release
SILVA	Manual	12,117	Genus	Dec 2017
RDP-II	Semi	6,128	Genus	Sep 2016
Greengenes	Automatic	3,093	Species	May 2013
GTDB	Automatic	143,512	Species	Today ^a

Source: Balvočiūtė et al 2017

Use frequently updated and well curated databases!

Diversity

Alpha diversity

Within sample diversity Who is in the sample

Uses Abundance and/or observed number of each ASV

Shannon, Simpson, Chao1

Richness, Evenness

Beta diversity

Between sample diversity How similar at the samples

Distance metric & clustering

Jaccard	Unifrac	Absent/Present
Bray-Curtis	Weighted- Unifrac	Abundance

Beta Diversity

	Sample 1	Sample 2	Sample 3
Sample 1		0.2	0.6
Sample 2	0.2		0.5
Sample 3	0.6	0.5	

Axis 2

Each Axis represents a percentage of variability it explains of the data.

Methods PCoA NMDS CCA

Shannon Index

What next?

Differential abundance analysis Network analysis Predictive functional analysis

Differential Abundance Analysis

Are there any taxa that are present in different abundance in the two types of cat?

Methods (to name a few)

DESeq2
Maaslin2
edgeR
metagenomeSeq
ANCOM2
ANCOM-BC
corncob
ALDEx2

"If you **torture** the data long enough, it will confess."

- Ronald Coase, *Economist*

Tips

Sample size

Are there enough samples for down stream analysis

Controls + & -

Helps identify contaminants

Length & Depth

Know which region, read length & depth suits your experiment

Be consistent

It is much better to use the same methods than to change methods frequently

Think before you start and ask why!

Shotgun Metagenomics

Total DNA

Functional Annotation + Metabolite prediction

Assembly

Phylogeny

Taxonomic profile

Identification or Kmer exact match classification

Samples

Taxa levels Kingdom Phylum Class Order Family Genus Species Strain

Limitations

- Avoids PCR bias but has it's own
- Computationally intense
- Did we get enough data to identify the whole community ?

Metabolomics

Identification and quantification of metabolites

Metabolomics

Untargeted

Global profiling Qualitative

Targeted

Measure a specific known set of metabolites Quantitative

Separate

Chromatography By size and charge

NMR or Mass spectrometry

Analyze

Detection options

LC/MS

Separation is required

Can resolve metabolites in complex mixtures

High Sensitivity and range

Expensive and serious batch effects

NMR

No separation required

Smaller number of biomarkers is detected

Lower sensitivity

Reproducible and free of batch effects

Typical Analysis

Data Acquisition: Spectra, NMR **Data Processing:** QC, normalization and statistical analysis

Data Investigation: Enrichment analysis or pathway analysis

Data Integration: Putting together with other omics data

Multi-Omics Approach

Putting it all together

Meta-Transcriptome

